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Fracture mechanical analysis of self-fatigue 
in surface compression strengthened glass 
plates 

M. B A K I O G L U ,  F. ERDOGAN,  D.P.H. HASSELMAN*  
Department of  Mechanical Engineering and Mechanics and * Ceramics Research Labora- 
tory, Lehigh University, Bethlehem, Pennsylvania, USA 

This paper presents a fracture mechanical analysis of the static fatigue and spontaneous 
fragmentation of surface compression-strengthened glass plates in the absence of applied 
load. It is suggested that if an initial surface crack which is sufficiently deep to penetrate 
into the tensile zone within the plate interior is introduced into the plate, then static 
fatigue, and eventually spontaneous fracture may follow. The crack problem for glass 
plates under various internal stress fields is solved and the stress intensity factor is 
obtained as a function of the crack depth. Using the fracture toughness and the slow 
crack growth characterization of the material, the conditions for no crack propagation, 
crack propagation leading to crack arrest, and that leading to catastrophic failure are 
established and discussed. The general results obtained are illustrated by means of a 
numerical example based on a 2 mm thick surface compressiOn-strengthened glass plate 
exposed to water at 25 ~ C. 

1. Introduction 
The strength of brittle materials, particularly their 
impact and fatigue resistance, can be improved 
significantly by introducing residual stresses into 
the medium which are compressive at and near the 
surface. Such compressive stresses can be created 
by tempering, ion-exchange, or cladding with 
another material having a lower coefficient of 
thermal expansion. Particularly for glasses, strength- 
ening by either tempering or ion-exchange has 
found wide applications for a large variety of 
industrial and consumer products. However, 
glasses strengthened in this fashion appear to be '  
susceptible to spontaneous fragmentation even 
during the complete absence of applied loads.* A 
preliminary qualitative consideration of the many 
factors which could be responsible for this type 
of spontaneous fracture suggested that it was most 
likely due to the slow growth of surface cracks 
which may have been caused, for example, by an 
incidental impact at some time prior to the frag- 

mentation. The driving force for this subcritical 
crack propagation is provided by the internal 
stresses. Slow crack growth would be possible if 
the initial surface crack is sufficiently deep so that 
the crack tip is in the tensile stress zone in the 
material interior. The methods of failure predic- 
tion for brittle ceramics subjected to stress- 
corrosive environments are well established and 
have been applied successfully to the prediction 
of static fatigue [1], strain-rate sensitivity [2], 
single-cycle thermal shock [3], as well as thermal 
fatigue [4, 5]. It should be possible to carry out a 
similar failure analysis of the static fatigue of 
strengthened glasses under internal stresses only, 
provided the proper fracture mechanics analysis 
is available. The purpose of this paper is, to present 
such an analysis for flat plates under a given state 
of internal stress in order to establish the quantita- 
tive basis for corresponding failure criteria. The 
analytical results obtained are illustrated by 
considering a numerical example. 

*Such a problem was encountered in relation to an eye-lens during a consulting case by one of the authors (DPHH). 

1826 �9 Chapman and Hall Ltd. Printed in Great Britain. 



bo 

13 

"i 

- I  

IYo ~ ~ 

I I 

h 

a b 

F i g u r e  1 The crack geometry in a plate under residual stress field. 
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2. Formulation and solution of the crack 
problem 

The two-dimensional problem under consideration 
is described in Fig. 1. It is assumed that a homo- 
geneous, isotropic, elastic plate of  thickness h 
is under a given state of  residual or internal stresses 
which is compressive near and at the surfaces and 
tensile in the interior. The plate is otherwise free 
from the external loads. Thus, the internal stresses 
are in self-equilibrium and satisfy conditions of  
the following form: 

h 

fo ~ = O, OR(X ) = Oyy(X, 0). (1) 

It is assumed that the plate contains an edge 
crack which is perpendicular to the surface and 
has a depth b, where b o < b < h  as shown in 
Fig. la. Because of  the compressive stresses near 
the boundary, the crack faces along 0 ~<x < a  
will be closed and will be under compression, 
the distance a being one of the unknowns in the 
problem. The crack is open only between x = a 
and x = b, and because of  the smooth contact 
o f  the crack surfaces, at x = a the "crack tip" is 
cusp shaped rather than being parabolic. This 
means that if the problem is treated as a contact- 
crack problem, at the end point x = a, the stress 
intensity factor ka must be zero. Thus, the con- 
dition 

k~ = 0 (2) 

provides the additional information in the solution 
of  the problem to determine the distance a. The 
problem shown in Fig. l a is solved for a given 
distribution of  internal stress by considering an 
arbitrarily located crack along a < x < b, (a > 0, 
b < h), and for a fixed b, determining the value of  

a for which k a - 0. For the solution the standard 
superposition technique is used, in which the 
solution o f  the plate with stress-free crack is 
assumed to be the sum of two solutions: (1) the 
plate without the crack having the internal stress 
ayy(x, y)= on(x), and (2) the plate in which the 
only applied load is the crack surface traction 
given by 

%,(x, 0) = - o n  (x), a < x < b. (3) 

To compute the stress intensity factor at the" 
crack tip x = b, clearly it is sufficient to consider 
problem 2 only. 

It has been shown that [ 6 -8 ]  the formulation 
of the general problem (shown in Fig. lb)  leads 
to the following singular integral equation [8]:  

--  + k (x ,  t) f ( t )  dt  
7r t - -  x 

l + t ~  
- On(X), a < x < b  (4) 

where Equation 3 has been used for the crack 
surface traction, # is the shear modulus of  the 
material, K = 3 - 4v for plane strain and tr = 
(3 - u)/(l + v) for plane stress, p being the Pois- 
son's ratio. In Equation 4 the unknown function 
is defined by 

a 
f (x)  = ~x v(x, o) (s) 

where v is the crack surface displacement, and the 
Fredholm kernel k(x, t) is given by 

jo ~(x,O = [ K l ( X , t , s ) - ~ ( h - x , h - t , s )  

+K2(x,t,s) ~2(h-x ,h- t , s ) lds ,  
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K,(x, t, s) 

K~(x, t, s) 

: [p(s) e-*(2h+x+t) 

- R  (s) e -*<2 "+ t - x ) ] / z ( s ) ,  

= [B(s)P(s) e -s(2h+x+t) 

- -  A ( s )R  (s) e-S(2 h + t - x ) ] / Z ( s ) ,  

P(s) = e T M  -- 1 -- 2hs -- 2ts(e TM -- 1), 

R(s)  = 2hs - -  l + e - z h * - 4 t h s  2, 

Z(s)  = (1 --e-2hs)  2 - -4h2s  2 e -2hs 

A(s)  = { [1 - 2(h - x ) s  + e2(h-x)s] ,  

B(s) = �89 [1 + 2(h - x ) s +  e - 2 ( h - x ) q .  (6) 

Solution of Equations 4 and 2 gives the unknown 
function f ( x )  and the unknown constant a. After 
f ( x )  is determined, the stress intensity factor at 
the crack tip x = b may be determined from 

k b = --lim 4VX/zr X/[2(b - x)] f ( x ) .  (7) 
x-+b 1 +• 

The integral Equation 4 is solved by using the 
technique described by Erdogan and Gupta [9]. 

3. Calculation of crack propagation and 
failure times 

The solution of  the crack problem gives the stress 
intensity factor kb as a function of  b which may 
be expressed as 

kb = F(b) .  (8) 

Let KT be the threshold value of the stress in- 
tensity factor for the material, defined as the 
minimum value required for slow crack growth, 
and let Kic be the critical stress intensity factor 
corresponding to catastrophic failure. Also, let 
the expression 

db 
dt - C ( k b )  = C [F(b)]  = g(b),  (9) 

giving the slow crack growth velocity as a function 
of  the stress intensity factor or, through Equation 
8, as a function of  the crack depth, be known. For 
a given internal stress profile, slow crack growth 
will occur only when k b > KT or 

IF(b)]  m a x  > KT and bi > bl (10) 

where b i is the initial crack length introduced into 
the plate at t = 0, and bx is the minimum crack 
depth necessary for the initiation of  slow crack 
growth obtained from (see insert in Fig. 7) 

F ( b l )  = K T, F ' ( b l ) > 0 .  (11) 
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The slow crack growth would be eventually 
arrested if 

K T < [F(b)]  m a x  < KIC, bi > b l .  (12) 

In this case, from Equation 9 the time to crack 
arrest may be obtained as 

f ba db (13) 
Ta = bi g ( b )  

where b a is the second root of  Equation 11, 
i.e. (see Fig. 7) 

F ( b , )  = KT, F ' (ba)  < 0. (14) 

On the other hand, if, in addition to the slow 
crack growth condition 10, the condition 

[F(b)]  max > K i n  (15) 

is satisfied, then the plate may fail catastrophic- 
ally and the time to failure may be obtained from 

= ( b2db  

Tf Jbi g(b) (16) 

where the critical crack length b2 is obtained from 
(see Fig. 7) 

Y(b2)  = K m,  F ' (b2 )  > 0. (17) 

Here, it is assumed that when kb = K m  the fast 
fracture would begin, and since subsequently kb > 
Km for some small period of time (see Figs. 2 to 
4) the crack would further accelerate. Then be- 
cause of the dynamic effects, it may be con- 
jectured that the crack would propagate through 
the entire plate thickness even if the crack driving 
force or k b eventually falls below Kic when the 
crack approaches the opposite surface. However, 
if (kb)ma  x is not much greater than Kin,  the 
dynamic effects may not be sufficient to cause the 
crack to penetrate through the entire plate thick- 
ness. 

4. Numerical example and results 
Stress intensity factors were generated for three 
selected symmetric residual or internal stress fields 
expressed by 

o l ( x )  = o0[1 - 3 ( 2 x / h  - 1)2], (18) 

o~t(x) = Oo [1 - 5(2x/h - 1)4], (19) 

o3(x )  = Oo [1 - 7(2x/h - 1)61 (20) 

where Oo is the tensile stress at the midplane of 
the plate (Fig. 1). Parabolic stress distribution 
(Equation 18) is typical for a tempered glass, 
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Figure 2 Stress intensity factor at the left end of the crack, ka, for arbitrary crack size and orientation in a plate in 
which the residual stress is a second degree polynomial. 
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bixure  3 Stress intensity factor k a in a plate where the residual stress is a fourth degree polynomial. 

whereas the 6th degree polynomial  distribution 
(Equation 20) may be more representative of a 
glass strengthened by ion exchange. Figs. 2 to 4 
show the stress intensity factor ka at the crack tip 
x = a for any given values of  a and b (Fig. lb) .  
In these figures k~ is normalized with-respect  to 

eox/(Trl), where l = (b  - a ) / 2 .  Since the loading is 
symmetrical ,  corresponding kb values may be ob- 
tained by considering mirror images of  the crack 
with respect to the mid-plane. The figures also 
show the tensile part of  the internal stresses given 
by Equations 18 to 20. From these figures it may 
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Figure  4 Stress intensity factor k a in a plate where the residual stress is a sixth degree polynomial. 
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Figure 5 The value of the crack closure distance a (corresponding k a 0) as a function of the crack depth b. 

be observed that 

ka oR (21 ) 
- + - -  as  b ~ a 

Oo,,/(~l) Oo 

which is expected, since when b ->a ,  the crack 
length 2l is very small compared to a and b, and 
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essentially the problem becomes one of an in- 
finite plane containing a crack of length 2l sub- 
jected to uniform pressure aR for which k a = 

oR x/Orl). 
Fig. 5 shows the crack closure distance a 

corresponding to k .  = 0 for the three internal 
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Figure 6 The stress intensity factor k b (corresponding k a = 0) for the three residual stress fields. 

stress distributions (Equations 18 to 20) (see Fig. 
la). In Fig. 5 the intersection of  the a = b line 
with the  a versus b curve corresponds to the 
point x = b at which the internal stress is zero. 
Thus, note that a is always less than bo and 
a -+ b0 when b -* bo. 

From the viewpoint of  static fatigue analysis, 
the most relevant information is the stress in- 
tensity factor kb obtained as a function of  b, 
for which k a = 0 (i.e. Equation 8). For the three 
internal stress profiles (Equations 18 to 20) 
these functions are shown in Fig. 6. In this figure 
too, kb is normalized with respect to a0x/(lrr), 
l = ( b -  a)/2. Therefore, before using it in, for 

example, Equations 9, 13 or 16, a and l should 
be expressed in terms of  b through the results 
given in Fig. 5. 

For a numerical example, the analytical results 
presented above were applied to a 2 mm thick soda 
lime-glass plate with an internal stress distribution 
given by Equations 18 or 20, exposed to a water 
environment at 25~ As measured by Wiederhorn 
and Bolz [10],  the rate of  slow crack growth may 
be expressed as: 

(db/dt) = Vo exp [(ckb --E)/RT] (22) 

where vo and c are constants, and the activation 

energy E = 1.088 x l0  s J mo1-1 , the gas constant 
R = 8.32J mol -x ~ and the temperature T =  
298K for the present study. As shown in a pre- 
vious study [8] devoted to the thermal fatigue 
resistance of  this soda-lime-glass, the rate of  slow 
crack growth most accurately can be described by 
two bi-linear regions between a fatigue limit, 
KT ~ 2.49 x 10SNm -3/2 and the critical stress 
intensity factor, /fie = 7.49 x l0 s N m -3/2. For 
these two bi-linear regions Vo and Care [8] : 

lnVo = --1.08, C = 1.088 for 
k b < 3 . 6 2  x l0 s N m  -3/2 

lnVo = 10.3, C = 0 .110for  

k b > 3.62 x l0  s N m -a/2 

For an optical borosilicate glass exposed to moist 
air, the crack-growth behaviour is almost identical 
to the bilinear crack-growth behaviour chosen for 
the present example. Accordingly, the results 
obtained are not limited only to the specific glass 
chosen for the present example. 

The results for a parabolic internal stress dis- 
tribution (Equation 18) are shown in Fig. 7 where 
the initial crack depth b i = bl is just sufficient 
to start the slow crack growth (see Equation 11). 
When the magnitude of  the compressive sur- 

1 8 3 1  
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Figure 7 Time-to-failure Tt(o s > o e) and 
time-to-crack arrest Ta(o T < a s < oe) in 
a 2 m m  thick soda-lime-glass plate in 
water for b i = b  I . Assumed internal 
stress field: second degree polynomial. 

Figure 8 Time-to-failure TI(o s > o e) and 
time-to-crack arrest Ta(o T < a s < ae) in 
a 2 mm thick sodaqime-glass plate in 
water for b i : b  I . Assumed internal 
stress field: sixth degree polynomial. 
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face stress a s is greater than a critical stress ae,  
then condi t ion  15 is satisfied and t ime to failure 
T~ s h o w n  in the figure is calculated from Equa- 

t ion 16. The stress a s = o e corresponds to (kb)ma x 

= KIC. The figure also shows the critical crack 
growth length b2.  Note  that for greater values 
o f  as, smaller values o f  b i = b l  are needed to 
initiate the s low crack growth and shorter t ime 

1 8 3 2  

T~ elapses until  catastrophic failure. When Os 
is less than oe but greater than a threshold stress 
a T corresponding to (kb)ma x = K a ,  , then con- 
di t ion 12 is satisfied and the t ime for crack arrest 
Ta shown in the figure is calculated from Equat ion 
13. The discont inuity  in the t ime curve at as = ae 
is due to the fact that the subcritical crack propa- 
gation w h e n  a s < oe takes place for the increasing 
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Figure 9 Time-to-failure in a 2 m m  thick soda- 
lime glass in water as a funct ion o f  the initial 
crack length b i and for various values of  
surface stress a s . Assumed internal stress 
field: second degree polynomial .  

as well as the decreasing branch of  the k b curve, 
whereas when o s > a e it takes place only for the 
increasing branch (see Equations 13 and 16 
and the definitions given by Equations 11, 14 and 
17). For a w < % < ac the arrest value of  the crack 
d e p t h  b a defined by Equation 14 is also shown in 
the figure. It is seen that when a s ~ aT (or as 
(k~)max ~ K T )  kb = K T  line becomes tangent to 
k b versus b curve and b e --*bl. However, for this 
limiting case, since the crack growth velocity 
approaches zero, as seen from the figure, T a 
asymptotically goes to infinity. 

Similar results for an internal stress field 
given by a sixth degree polynomial (Equation 20) 
are shown in Fig. 8. 

In the results shown in Figs. 7 and 8 it is as- 
sumed that bl = bi. In a plate with a parabolic 
internal stress distribution, the time to failure, 
Tf is shown in Fig. 9 as a function of  an arbitrary 
initial crack length bi,  (b i > b l )  for various values 
of  a s where a s > ac. Since the surface stress levels 
shown in Figs. 7 to 9 are within the range of  those 

encountered in surface compression strengthened 
glasses, the conclusions that can be drawn from 
these results is that fracture by static fatigue due 
to internal stresses only, indeed appears to be 
possible. 

5. Discussion 
From the analysis given in this paper, a number 
of  general conclusions may be drawn. Most impor- 
tantly, the solution indicates that spontaneous 
fragmentation resulting from static fatigue is 
indeed a possible mode of  failure in surface com- 
pression strengthened glasses. In fact, as shown by 
the numerical example, for high values of internal 
stress level and initial crack depth, the failure 
times can be rather short. 

Although the increased impact resistance of  
surface-compression strenghtened glasses must be 
considered a major advantage, the static fatigue of  
such glasses which may have received a major 
damage just short of  catastrophic failure during 
an impact represents a definite hazard. This is 
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particularly so, since in glasses flaws of  sufficient 
size to cause such failure are very difficult to 
detect. Clearly, the development of  a reliable non- 
destructive flaw-detection technique in glasses is 
highly desirable. Even if the crack never became 
critical and propagated in a slow manner only, 
the remaining ligament on crack arrest could be 
only a small fraction of the plate thickness. This 
would weaken the plate to such an extent that 
only a small applied load would be required for 
total failure, again giving rise to a hazardous 
condition. 

To minimize the incidence of  static fatigue, 
clearly it will be advantageous to select or develop 
glasses with values of  K T and Kic as high as 
possible, in combination with low rates of  crack 
growth characteristics even in highly stress-corro- 
sive environments. Although the numerical ex- 
ample was carried out for a plate of  2 mm thick- 
ness only, the analytical results indicate that for 
a given internal stress distribution, the static 
fatigue depends on the ratio of  flaw depth to plate 
thickness. Obviously, then, static fatigue may be 
reduced even further, or perhaps even eliminated 
by increasing the total plate thickness. 

For an internal stress distribution given by the 
sixth degree polynomial (Equation 20), for a given 
value of  surface stress the thickness of the com- 
pressive zone and the magnitude of the tensile 
stresses in the interior are expected to be smaller 
than for a parabolic internal stress distribution. 
This suggests that for the sixth degree internal 
stress distribution a shallower initial crack will be 
required for the static fatigue process than for the 
parabolic stress distribution. On the other hand, 
it is also clear that for the sixth degree poly- 

nomial, because of  the lower tensile stress in the 
plate interior, the subcritical crack growth velocity 
will be smaller, the critical crack length will be 
greater, and consequently time to failure will be 
longer than for the parabolic stress distribution. 
These conclusions may be clearly observed by 
comparing the results given in Figs. 7 and 8. 
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